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ABSTRACT Let s = a + it. For any complex a, all but
0(1/log log T) of the roots of ¢(s) = a in T < t < 2Tlie in
1- 1/21 < (log log T)'/log T. The results extend easily to
other functions satisfying a functional equation such as
the Dirichlet L-functions, the Lerch functions, etc.

In his recent book (ref. 1, pp. 164 and 197) Edwards
states that the clustering of the zeros of ¢(s) near f =
1/2, first proved by Bohr and Landau (2), is the best ex-
isting evidence for the Riemann Hypothesis. Titchmarsh
(ref. 3, p. 197) also emphasizes with italics the clustering
phenomenon of the zeros of c(s). It will be shown here
that for any complex a the roots of c(s) = a cluster at a
- 1/2 and so, in this sense, the case a = 0 is not special.
However, from ref. 3, Chap. 11, it is clear that the clus-
tering for the case a = 0 is more pronounced than for a
# 0, since the roots of c(s) = a, a #0 . in a> 1/2 + 5,
0 < t < T, must exceed K(a,6)T, K(a,8) > 0, and so the
results on N(u,T), such as those of Ingham (ref. 3, p.
203) and Selberg (ref. 3, p. 204), are peculiar to a = 0.
The clustering of the roots of c(s) = a at a = '/2

was demonstrated under the Riemann Hypothesis in
1913 by Landau (4).

THEOREM. Let T'1/ < U < T. Let a be any fixed com-
plex number. Let NM') (a; T, U) be the number of roots of
c(s) = a in

a> + (log log T)2/log T, T < t < T + U;

let N(2) (a; T, U) be those in

a < - (log log T)2/log T, T < t < T + U;

and let NM3) (a; T, U) be those in

- (log log T)2/log T < a <2

+ (log log T)2/log T, T< t <T + U.

Then for large T

NM3) (a; T, U) = - log T + O(U log T/log log T)
2v

NM') (a; T, U) + NM2) (a; T, U) = O(U log T/log log T).

LEMMA 1.

fTT+ ~.( + it)2dt = 0(U log T).

Proof: By the approximate functional equation

1 + it) < 21 E n-1/2-itI + O(t-/).2 ~~~~n(t/2r) 1/'

By the familiar process of treating the diagonal and
nondiagonal sums separately,

rT+U
JT n. (t/2r)' n-1/2-itI2dt = 0(U log T)
Tn< (t/2r) 1/2

and the lemma is proved. [Far sharper results have been
proved (ref. 3, Chap. 7).

It will be assumed in what follows that a $ 1. The
minor modification for the case a = 1 will be indicated
below.

LEMMA 2. Denote the roots of c(s) = a by aa + ita. Let
b be real. Then

tT+ ET
2r + (aa + b) = f log 1J(-b + it)

T<t;< T+UT
a>-b

-aldt -U log 1- al + O(log T).

Proof: A familiar lemma of Littlewood (ref. 3, p.
187) is applied to G(s) = (r(s) - a)/(l - a). If c is suffi-
ciently large, it follows from integrating log G(s) around
the boundary of the half-strip, a = c, T < t < T + U;
af> c, t = T; a> c, t = T + U, and taking the imagi-
nary part of the result that

T+ U
fT+Ulog |G(c + it)|dt = 0(1).

Use is made of log (1 + w) = O(w) for IwI < '/2. Using
Jensen's theorem in a familiar way (ref. 3, p. 180) in
circles with centers at (c, T) and (c,T + U) gives

P arg G(o + iT)da = O(log T)
am b

and similarly for t = T + U. This proves the lemma.
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LEMMA 3.

27r E Ora( - = O(U log log T)
T<ta< T+ U 2

.a> 1/2

Proof: Use Lemma 2 with b = -'/2. Note that

log + -.adt<-U

x log (bJr +it) - dt)

Application of Lemma 1 gives the result.

LEMMA 4.

NO') (a; T, U) = O(U log T/log log T).

Proof: From Lemma 3 follows

2 rN(1) (a; T, U)(log log T)2/log T = O(U log log T)

and this proves the lemma.

LEMMA 5. Let b > 2. Then for large T

2T U (aa + b)=( + b)[U log--U
T<ta< T+ U 2 2r

+ (T+ U)log T+ U - log l -al + O(log T)

Proof: From the functional equation D(s) =
x(s)r(l - s), where

x(s) = 2'T'r-1+ sin 7rs/2r(1 - s).
By Stirling's formula, x(s) = exp ((7ri/4) - 1 + f(s))
for Iarg s -7r/21 <T/4 where

AS) slog (1l-s)i+ s + 0(1/)
fs=\2 - g 2T

7
(1s)

Hence,

log jr(s) -al = log Ix(s)I
+ log Jr(i - s)I + o (x(a)t -s))

and

log Ix(s)I = Q - o)log It/(27)I + O(I/t).

Since x(s) for a < -2 exceeds t2 in size, there can be no
zeros of r(s) - a = 0 in a < -2 for large Iti. By Lemma
2 the above formulae yield

2.7r E (aa + b) = ( + b)
T<ta< T+U((

X fT+ logf-dt - U log 1 - aI + O(log T)
andtipm2

and this proves the lemma.

LEMMA 6.

NO') (a; T, U) + NO2) (a; T, U) + NO3) (a; T, U)

U log
T
-

U + T U log T + U + O(log T).
27r 27r 27r 27r T

Proof: In Lemma 5 subtract the case b + 1 from b
and note there are no zeros in of < -2 for large T.

This result was proved by Landau (4). In particular,
from Lemma 6 follows

N(1) (a; T, U) + N 2' (a; T, U) + N(3) (a; T, U)

=-log T + O(U) [1 ]
2r

The use of Littlewood's lemma in the proof that follows
is very similar to the use made in proving Theorem 2 of
ref. 5.

Proof of Theorem: From the definition of N
(a; T, U) and Lemma 3 follows

27r E (ra + b) < O(U log log T)
T<t< T+ U

+ 27r(b + -)[NM') + NO3) (a; T, U)]

+ 27r(b + - (log log T) 2/log T)N(2) (a; T, U)

Using Lemma 5 and Lemma 6, this yields

O < O(U log log T) - 27r(log log T)2N(2) (a; T, U)/log T
or

N(2) (a; T, U) = O(U log T/log log T).

Combining this with Lemma 4 and [1 ] proves the theo-
rem for a $ 1.
For a = 1, let G(s) = 2*(r(s) - 1) and make the

minor changes necessary.
By Rouch6's theorem and Stirling's formula for x(s)

it follows easily that there is also a root of i(s) - a = 0
in the neighborhood of s = - 2n for large n, and with a
finite number of possible exceptions, these are the only
roots with ar < -2.
A more general result than the theorem which has the

same proof is the following:
Let6>Obe small and T'/2 < U < T.ForT<t< T +

U, let N(1) (a, 6; T, U) be the number of roots of c(s) = a in
af> I/2 + 6; let N(s) (a, 8; T, U) be the number in a < 1/2
- 6; and let N(3) (a, 6; T, U) be the number in 1/2 - 6

a < 1/2 + 6. Then

N(3) (a, 8; T, U) = - log T + O(U(log log T)/8)27

N(,) + N(2) (a, 8; T, U) = O(U(log log T)/8)
The theorem is the special case 8 = (log log T) 2/log T.

Roots of .(s) = a 1323
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P. T. Bateman has informed me that A. Selberg has
written to him that he can sharpen the above results
since he can prove that for a $ 0

CT /1 it) t e ~1Jr,J log 2+ - adt 2 xIr-'T(log log T)l/2.

This replaces Lemma 3 and is used in Lemma 2 with b =
-1/2 to give the sharp result.
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